## **Isolation and Structure of Five New Cancer Cell Growth Inhibitory** Bufadienolides from the Chinese Traditional Drug Ch'an Su

Toshihiko Nogawa,<sup>†</sup> Yoshiaki Kamano,<sup>\*,†</sup> Ayano Yamashita,<sup>†</sup> and George R. Pettit<sup>\*,§</sup>

Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan, and Cancer Research Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-2404

Received February 28, 2001

Five new bufadienolides,  $3\beta$ -formyloxyresibufogenin (1), 19-oxobufalin (2), 19-oxodesacetylcinobufagin (3),  $6\alpha$ -hydroxycinobufagin (4), and  $1\beta$ -hydroxybufalin (5), have been isolated together with the previously known bufadienolides 6-20 from the Chinese traditional drug "Ch'an Su". The structures were elucidated employing spectroscopic methods. Bufadienolides 1-5 provided significant inhibitory activity against the KB and HL-60 cancer cell lines. In addition, bufadienolide 1 was found active against the MH-60 cancer cell line.

The Chinese traditional drug Ch'an Su is a product of the skin secretions of local toads such as *Bufo gargarizans* Cantor or Bufo melanostrictus Schneider. The principal biologically active components of Ch'an Su are bufadienolides, which have steroidal A/B cis and C/D cis ring junctures with a  $17\beta$ -2-pyrone ring and show a range of activities, such as cardiotonic, blood pressure stimulating, and antineoplastic.<sup>1</sup> Recently, we reported cancer cell growth SAR relationships for a selection of bufadienolides,<sup>2</sup> new separation methods using Sephadex LH-20,3 and conformational preference of the  $17\beta$ -2-pyrone ring as analyzed by spectroscopic and computational method.<sup>4</sup> In addition, we have described new indole alkaloid and bufadienolides components of Ch'an Su.<sup>5</sup> In our continuing investigation of Ch'an Su components, we have isolated five new cancer cell growth inhibitory bufadienolides, namely,



resibufogenin 3-formate (1), 19-oxo-bufalin (2), 19-oxodesacetylcinobufagin (3),  $6\alpha$ -hydroxycinobufagin (4), and  $1\beta$ - hydroxybufalin (5). Herein we have summarized the isolation and structure elucidation of bufadienolides 1-5 and evaluated their activity along with that of bufadienolides 6-20 against three cancer cell lines (KB, HL-60, and MH-60).

## **Results and Discussion**

Thin plate Ch'an Su (2.0 kg) was extracted with CH<sub>3</sub>-OH and 1:1 C<sub>2</sub>H<sub>5</sub>OH, and the crude extract was subjected to column chromatography on HP-20 (DIAION). Elution with CH<sub>3</sub>OH-water followed by successive column chro-





7, R<sub>1</sub> = R<sub>3</sub> = R<sub>4</sub> = H, R<sub>2</sub> = CH<sub>2</sub>OH 8, R<sub>1</sub> = R<sub>4</sub> = H, R<sub>2</sub> = CH<sub>3</sub>, R<sub>3</sub> = OH 9, R<sub>1</sub> = H, R<sub>2</sub> = CH<sub>3</sub>, R<sub>3</sub> = OH, R<sub>4</sub> = OCOCH<sub>3</sub> 10, R<sub>1</sub> = R<sub>3</sub> = H, R<sub>2</sub> = CH<sub>2</sub>OH, R<sub>4</sub> = OH **11**,  $R_1 = R_3 = R_4 = H$ ,  $R_2 = CH_3$ 12, R<sub>1</sub> = R<sub>3</sub> = H, R<sub>2</sub> = CH<sub>3</sub>, R<sub>4</sub> = OCOCH<sub>3</sub> **13**, R<sub>1</sub> = R<sub>3</sub> = H, R<sub>2</sub> = CH<sub>3</sub>, R<sub>4</sub> = OH 14, R<sub>1</sub> = OH, R<sub>2</sub> = CH<sub>3</sub>, R<sub>3</sub>, = H, R<sub>4</sub> = OCOCH<sub>3</sub> 15, R<sub>1</sub> = R<sub>4</sub> = OH, R<sub>2</sub> = CH<sub>3</sub>, R<sub>3</sub>, = H

© 2001 American Chemical Society and American Society of Pharmacognosy Published on Web 08/17/2001

<sup>\*</sup> To whom correspondence should be addressed. Tel: (480) 965-3351. Fax: (480) 965-8558. † Kanagawa University.

<sup>§</sup> Arizona State University.

**Table 1.** <sup>1</sup>H NMR Spectral Data [500 MHz,  $\delta_{\rm H}$  (*J*, Hz)] for Bufadienolides 1–5 in CDCl<sub>3</sub> (1, 2, and 5), CD<sub>3</sub>OD (3), and CDCl<sub>3</sub>/CD<sub>3</sub>OD (7:1) (4)

| position  | 1                      | 2                | 3                | 4                | 5                |  |
|-----------|------------------------|------------------|------------------|------------------|------------------|--|
| 1α        | 1.60m                  | 1.54m            | 1.53m            | 1.54m            | 3.84s            |  |
| $1\beta$  | 1.41m                  | 1.81m            | 1.85m            | 1.48m            |                  |  |
| 2α        | 1.59m                  | 1.54m            | 1.63(2H)         | 1.55(2H)         | 1.76m            |  |
| $2\beta$  | 1.68m                  | 1.71m            |                  |                  | 2.00m            |  |
| 3α        | 5.25br s               | 4.19br t(2.3)    | 4.08br t(2.3)    | 4.15s            | 4.20m            |  |
| 4α        | 1.90m                  | 1.87qd(14.2,2.8) | 1.95td(13.8,2.8) | 1.73m            | 1.96m            |  |
| $4\beta$  | 1.48m                  | 1.53m            | 1.48m            | 1.51m            | 1.48m            |  |
| $5\beta$  | 1.72m                  | 2.33m            | 2.30m            | 1.96dt(13.3,4.1) | 2.10m            |  |
| 6α        | 1.23m                  | 1.44m            | 1.36m            |                  | l.39m            |  |
| $6\beta$  | 1.85dt(13.8,4.6)       | 1.60m            | 1.54m            | 4.09dt(11.9,4.6) | 1.85m            |  |
| 7α        | 0.94qd(12.8,3.7)       | 1.27m            | 1.05qd(12.8,3.2) | 0.95m            | 1.32m            |  |
| $7\beta$  | 1.53m                  | 1.81m            | 1.48m            | 1.71m            | 1.76m            |  |
| $8\beta$  | 2.01td(11.9,3.7)       | 1.83m            | 2.28m            | 2.12td(12.4,3.7) | 1.60td(ll.9,3.7) |  |
| 9α        | 1.56m                  | 1.69m            | 1.82m            | 1.59m            | 1.47m            |  |
| 11α       | 1.53m                  | 1.47m            | 1.59m            | 1.56m            | 1.32m            |  |
| $11\beta$ | 1.33m                  | 1.81m            | 1.91td(12.8,3.7) | 1.28qd(13.3,3.2) | 1.24td(13.7,3.7) |  |
| 12α       | 1.40m                  | 1.35td(13.3,3.7) | 1.46m            | 1.44td(13.3,3.2) | 1.29m            |  |
| $12\beta$ | 1.66m                  | 1.55m            | 1.77m            | 1.80dt(13.3,2.8) | 1.51m            |  |
| 15α       | 3.53s                  | 2.05dt(12.8,9.6) | 3.59s            | 3.68s            | 2.00m            |  |
| $15\beta$ |                        | 1.67m            |                  |                  | 1.76m            |  |
| 16α       | 2.39ddd(15.1,10.5,1.4) | 2.20dt(12.8,9.6) | 4.72dd(9.2,1.4)  | 5.47d(9.2)       | 2.19m            |  |
| $16\beta$ | 1.96d(15.1)            | 1.76m            |                  |                  | 1.71m            |  |
| 17α       | 2.47d(10.1)            | 2.47dd(9.6,6.4)  | 2.69d(9.2)       | 2.85d(9.2)       | 2.46dd(9.6,6.4)  |  |
| 18        | 0.78s                  | 0.78s            | 0.85s            | 0.82s            | 0.71s            |  |
| 19        | 1.01s                  | 9.50d(1.4)       | 9.47d(1.8)       | 0.97s            | 1.10s            |  |
| 21        | 7.24d(1.8)             | 7.24d(2.3)       | 7.40s            | 7.22br s         | 7.23d(l.8)       |  |
| 22        | 7.79dd(9.6,2.3)        | 7.84dd(9.6,2.3)  | 8.10d(9.6)       | 7.96br s         | 7.84dd(9.6,2.3)  |  |
| 23        | 6.25dd(9.6,0.9)        | 6.27d(9.6)       | 6.20dd(9.6,0.9)  | 6.24d(10.2)      | 6.23d(9.6)       |  |
| 1'        | 8.07s                  |                  |                  |                  |                  |  |
| 2′        |                        |                  |                  | 1.91s            |                  |  |

matography on SiO<sub>2</sub>, Sephadex LH-20, and C<sub>18</sub>-HPLC afforded new compounds 1-5 as colorless solids together with the previously known bufadienolides, resibufogenin 3-formate (1, 11.2 mg, 0.0012%), 19-oxobufalin (2, 25.1 mg, 0.0028%), 19-oxodesacetylcinobufagin (3, 30.3 mg, 0.0034%),  $6\alpha$ -hydroxycinobufagin (4, 12.1 mg, 0.0013%),  $5\beta$ -hydroxybufotalin (5, 10.8 mg, 0.0012%), and  $1\beta$ -hydroxybufalin (6, 52.2 mg, 0.0058%) as colorless solids together with the previously known bufadienolides,  $5\beta$ -hydroxybufotalin (**6**), 19-hydroxyresibufogenin (= resibufaginol) (7),  $12\beta$ -hydroxyresibufogenin (8),  $12\beta$ -hydroxycinobufagin (9), 19-hydroxydesacetylcinobufagin (= desacetylcinobufaginol) (10), resibufogenin (11), cinobufagin (12), desacetylcinobufagin (13), cinobufotalin (14), desacetylcinobufotalin (15), bufalin (16), bufotalin (17), desacetylbufotalin (18), telocinobufagin (19), and gamabufotalin (20). Structures 1-5 were assigned as follows.

Bufadienolide 1 gave a pseudomolecular ion at m/z 413  $[M + H]^+$  in the FABMS corresponding to the molecular formula C<sub>25</sub>H<sub>32</sub>O<sub>5</sub>. The UV and IR absorption spectra implied the presence of 2-pyrone (298 nm; 1653 cm<sup>-1</sup>) and ketone (1717 cm<sup>-1</sup>) groups. Analysis of <sup>1</sup>H and <sup>13</sup>C NMR data (Tables 1 and 2) and the HMQC spectrum confirmed that steroid 1 possessed 25 carbon atoms. Among these, three sp<sup>2</sup> carbons ( $\delta_c$  149.59, 162.02, and 160.73), two sp<sup>3</sup> methines ( $\delta_c$  59.85 and 70.47), and one sp<sup>3</sup> quaternary carbon ( $\delta_c$  74.60) were assigned to carbon atoms bearing an oxygen atom. The <sup>1</sup>H NMR spectrum was similar to that of resibufogenin (11) with H-21, H-22, and H-23 signals  $(\delta_{\rm H}$  7.24, 7.79, and 6.25) characteristic of the 2-pyrone ring of bufadienolides and H-15 ( $\delta_{\rm H}$  3.53) of a 14,15-epoxy group. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum revealed the connectivities of C-2 to C-5, C-6 to C-9, and C-22 to C-23. In the HMBC spectrum, correlations of H-3 to C-1 and C-5, H-12 to C-9, C-11, and C-14, H-17 to C-12, C-14, and C-15, and H-16 to C-13 and C-14 were observed. These results showed the connectivities of C-1 to C-5 and C-6 to C-17. In addition, HMBC correlations of H-19 to C-1, C-5, and C-9 and H-18

Table 2.  $^{13}C$  NMR Data (125 MHz  $\delta C)$  of Bufadienolides 1–5 (cf. Table 1 Solvents)

| position | 1      | 2      | 3      | 4      | 5      |
|----------|--------|--------|--------|--------|--------|
| 1        | 30.20  | 21.09  | 21.79  | 29.83  | 73.48  |
| 2        | 25.07  | 26.38  | 26.91  | 27.34  | 32.40  |
| 3        | 70.47  | 65.56  | 66.47  | 65.57  | 68.24  |
| 4        | 30.42  | 32.33  | 33.03  | 25.95  | 33.51  |
| 5        | 36.73  | 28.80  | 30.13  | 42.48  | 30.11  |
| 6        | 25.60  | 28.07  | 28.61  | 66.75  | 26.01  |
| 7        | 20.66  | 21.37  | 21.98  | 28.31  | 21.43  |
| 8        | 33.59  | 42.50  | 34.78  | 32.39  | 42.44  |
| 9        | 39.55  | 34.90  | 38.96  | 38.78  | 37.60  |
| 10       | 35.28  | 51.06  | 52.45  | 36.76  | 39.95  |
| 11       | 21.07  | 21.00  | 21.79  | 20.96  | 21.02  |
| 12       | 39.34  | 40.86  | 40.80  | 40.07  | 40.79  |
| 13       | 45.27  | 48.46  | 46.35  | 45.36  | 48.23  |
| 14       | 74.60  | 85.04  | 73.23  | 72.15  | 85.18  |
| 15       | 59.85  | 31.87  | 63.23  | 59.61  | 32.75  |
| 16       | 32.42  | 28.56  | 73.13  | 74.93  | 28.70  |
| 17       | 47.80  | 51.11  | 53.15  | 50.40  | 51.23  |
| 18       | 16.86  | 16.42  | 17.57  | 17.33  | 16.56  |
| 19       | 23.70  | 205.97 | 207.56 | 23.88  | 18.83  |
| 20       | 122.22 | 122.59 | 119.86 | 116.64 | 122.60 |
| 21       | 149.59 | 148.63 | 152.71 | 151.64 | 148.60 |
| 22       | 146.96 | 146.72 | 151.97 | 148.96 | 146.73 |
| 23       | 115.32 | 115.37 | 113.64 | 113.38 | 115.37 |
| 24       | 162.02 | 162.36 | 164.82 | 162.51 | 162.39 |
| 1'       | 160.73 |        |        | 170.57 |        |
| 2'       |        |        |        | 20.53  |        |

to C-12, C-14, and C-17 suggested that the two methyl groups (C-19 and C-18) were located on C-10 ( $\delta_c$  35.28) and C-13 ( $\delta_c$  45.27), respectively. The formyl signal correlated to C-3 in the HMBC spectrum and was assigned as H-1'. The connectivity between C-17 and C-20 was supported by HMBC correlations of H-17 to C-21 and C-22 and H-16 to C-20, thus giving rise to the connectivity through C-20 of the 2-pyrone ring.

The phase-sensitive NOESY spectrum was useful for analysis of the stereochemistry of bufadienolide **1**. NOESY correlations of  $H_3$ -19/H-5,  $H_3$ -19/H<sub>b</sub>-6,  $H_3$ -19/H<sub>b</sub>-8, and  $H_3$ -

| Table 3. | Cancer | Cell | Growth | Inhibitory | Activity | of the | New | Bufadienolide | es (1- | • <b>5</b> ) and | Related | Bufadien | olides | (6– | 20) |
|----------|--------|------|--------|------------|----------|--------|-----|---------------|--------|------------------|---------|----------|--------|-----|-----|
|----------|--------|------|--------|------------|----------|--------|-----|---------------|--------|------------------|---------|----------|--------|-----|-----|

|       | cancer cell lines IC <sub>50</sub> (µg/mL) |            |                   |                                                 |                   |                    |                      |                     |                           |
|-------|--------------------------------------------|------------|-------------------|-------------------------------------------------|-------------------|--------------------|----------------------|---------------------|---------------------------|
| compd | Kb <sup>a</sup>                            | $HL60^{b}$ | MH60 <sup>c</sup> | $\mathbf{B}\mathbf{X}\mathbf{P}\mathbf{C}3^{d}$ | MCF7 <sup>e</sup> | SF268 <sup>f</sup> | NCIH460 <sup>g</sup> | KM20L2 <sup>h</sup> | DU145 <sup><i>i</i></sup> |
| 1     | 3.40                                       | 1.00       | 8.1               | 1.6                                             | 0.60              | 0.38               | 0.53                 | 0.54                | 0.42                      |
| 2     |                                            | < 0.01     | >25               | 0.014                                           | 0.0072            | 0.0047             | 0.018                | 0.0082              | 0.0046                    |
| 3     | 0.65                                       | 3.00       | >25               | >1                                              | >1                | >1                 | >1                   | >1                  | >1                        |
| 4     | 0.87                                       | 0.038      | >25               | 0.46                                            | 0.360             | 0.32               | 0.74                 | 0.28                | 0.21                      |
| 5     | 0.19                                       | < 0.01     | >25               | 0.024                                           | 0.012             | 0.0044             | 0.014                | 0.011               | 0.005                     |
| 6     | 0.20                                       | < 0.01     | >25               | 0.11                                            | 0.046             | 0.033              | 0.048                | 0.034               | 0.024                     |
| 7     | 1.20                                       | 0.48       | >25               | 0.63                                            | 0.33              | 0.25               | 0.44                 | 0.45                | 0.38                      |
| 8     | 0.97                                       | 0.045      | >25               | 0.12                                            | 0.066             | 0.046              | 0.017                | 0.012               | 0.041                     |
| 9     | 0.79                                       | < 0.01     | >25               |                                                 |                   |                    |                      |                     |                           |
| 10    | 3.90                                       | 0.49       | >25               |                                                 |                   |                    |                      |                     |                           |
| 11    | 1.30                                       | 0.50       | 10                |                                                 |                   |                    |                      |                     |                           |
| 12    | 0.21                                       | < 0.01     | >25               |                                                 |                   |                    |                      |                     |                           |
| 13    | 0.44                                       | 1.00       | >25               |                                                 |                   |                    |                      |                     |                           |
| 14    | 0.37                                       | 0.047      | >25               |                                                 |                   |                    |                      |                     |                           |
| 15    | 10.00                                      | 4.30       | >25               |                                                 |                   |                    |                      |                     |                           |
| 16    | 0.67                                       | < 0.01     | >25               |                                                 |                   |                    |                      |                     |                           |
| 17    | 0.19                                       | < 0.01     | >25               |                                                 |                   |                    |                      |                     |                           |
| 18    | 0.79                                       | 0.025      | >25               |                                                 |                   |                    |                      |                     |                           |
| 19    | 1.30                                       | < 0.01     | >25               |                                                 |                   |                    |                      |                     |                           |
| 20    | 0.75                                       | 0.014      | >25               |                                                 |                   |                    |                      |                     |                           |

<sup>*a*</sup> Human carcinoma of the nasopharyx. <sup>*b*</sup> Human myelocytic leukemia. <sup>*c*</sup> Murine leukemia. <sup>*d*</sup> Pancreas-a. <sup>*e*</sup> Breast adn. <sup>*f*</sup> CNS gliobl. <sup>*g*</sup> Lung-NSC. <sup>*h*</sup> Colon. <sup>*i*</sup> Prostate.

19/H<sub>b</sub>-11 indicated that those protons were  $\beta$ -oriented. The *cis* ring junction at C-5 and C-10 was deduced from the NOESY correlation of H<sub>a</sub>-4/H<sub>a</sub>-7 and two six-membered rings had chair conformations, which was suggested by relatively small proton coupling constants between H-5 and H-6. Additional NOESY correlations of H<sub>3</sub>-18/H<sub>b</sub>-11, H<sub>3</sub>-18/H-8, and H<sub>a</sub>-12/H<sub>a</sub>-17 argued well for the stereochemistry of B/C *trans*, C/D *cis* ring junctures, and C-17. In addition, the  $\beta$ -epoxide at C-14–15 was verified and provided additional proof of chair conformations for steroid rings A–C. Complete assignments for the <sup>1</sup>H and <sup>13</sup>C NMR spectra were summarized in Tables 1 and 2. Thus, the structure of **1** was assigned as resibufogenin 3-formate (**1**).

The molecular formulas of compounds 2 and 3 were determined to be C<sub>24</sub>H<sub>32</sub>O<sub>5</sub> and C<sub>24</sub>H<sub>30</sub>O<sub>6</sub>, respectively, by HRFABMS. Again the UV and IR absorption spectra suggested the presence of a 2-pyrone ring, supported by <sup>1</sup>H and <sup>13</sup>C NMR data (Tables 1 and 2). The NMR spectra were similar to those of bufalin (16) and desacetylcinobufagin (13), respectively. However, the 19-methyl signals were missing and new signals were observed at  $\delta_{\rm H}$  9.50 and  $\delta_C$  205.97 for 2 and  $\delta_H$  9.47 and  $\delta_C$  207.56 for 3, implying 19-oxobufadienolide structures. In the HMBC spectra of steroids 2 and 3, the H-19 signals assignable to the aldehyde showed an HMBC correlation to C-9. Furthermore, HMBC correlations of H-9 to C-19 were also observed. In addition, the remaining NMR data was consistent with that of bufadienolides 16 and 13, respectively. That correlation allowed assignment of steroid 2 as 19-oxobufalin and steroid 3 as 19-oxodesacetylcinobufagin. In the <sup>1</sup>H NMR spectra of bufadienolides 2 and 3, the 19aldehyde signals were observed as doublets arising from coupling with the H-5 signals.

Compound **4** corresponded to molecular formula  $C_{26}H_{34}O_7$ by HRFABMS. The UV and IR absorption spectra again suggested the presence of a 2-pyrone ring, and this was confirmed by the <sup>1</sup>H and <sup>13</sup>C NMR data (Tables 1 and 2). In the <sup>1</sup>H NMR spectrum, the H-21 and H-22 signals were broad singlets. The <sup>1</sup>H NMR signals for H-15 ( $\delta_H$  3.68) of the 14,15-epoxy group and H-16 ( $\delta_H$  5.47) of the 16-acetoxyl group (appeared at  $\delta_H$  1.91) were also similar to those of cinobufagin (**12**). However, a new double doublet signal appeared at  $\delta_H$  4.06 for a carbon atom bearing a hydroxyl group. In the <sup>13</sup>C NMR spectrum, an oxygenated carbon signal was found at  $\delta_{\rm C}$  66.75. The <sup>1</sup>H–<sup>1</sup>H COSY spectrum revealed connectivities of C-2–C-9, and the new proton signal was assigned as H-6. This was supported by a HMBC correlation of H-6 to C-4. The orientation of H-6 was assigned as  $\beta$  by correlations with axial protons H-8 and H-19 in the NOESY spectrum. Thus, the structure of **4** was determined to be  $6\alpha$ -hydroxycinobufagin.

Bufadienolide **5** was found to have molecular formula  $C_{24}H_{34}O_5$  by HRFABMS. The <sup>1</sup>H and <sup>13</sup>C NMR spectra (Tables 1 and 2) were similar to that of the bufalin (**16**) spectra except for an additional signal at  $\delta_H$  3.84, which implied the addition of a new hydroxyl group. Analysis of the HMQC spectrum emphasized the presence of a new oxygenated methine carbon signal at  $\delta_C$  73.48, which was assigned to C-1 by an HMBC correlation with H-19 and of H-1 ( $\delta_H$  3.84) to C-3 and C-5. In the NOESY spectrum, a correlation between H-1 and H-11 suggested that H-1 was  $\alpha$ -oriented and the hydroxyl group was  $\beta$ , thereby completing the structure determination of 1 $\beta$ -hydroxybufalin (**5**).

Among the previously known bufadienolides (6-20) we isolated from Ch'an Su during this investigation, three (6, 7, and 8) had not been discovered earlier as natural products. Instead bufadienolides 6, 7, and 8 had been obtained by semisynthesis from, respectively, bufotalin (17), resibufagin,<sup>6</sup> and resibufogenin (11).<sup>7</sup> The structural elucidation of bufadienolides 6, 7, and 8 was accomplished employing the analogous spectral interpretation procedures used for assigning structures 1-5.

All (1-20) of the Ch'an Su bufadienolides were found to be active against the KB and HL-60 cancer cell lines (Table 3). The new bufadienolides (1-5) were also evaluated against a minipanel of human cancer cell lines (Table 3). Of these, the bufalin derivatives 2 and 5 were found to be exceptionally inhibitory (IC<sub>50</sub> to  $10^{-3} \mu g/mL$ ). Those were followed closely by  $5\beta$ -hydroxybufotalin (6). Two (1 and 11) also inhibited growth of the MH-60 murine leukemia cell line. In our early studies of toad venom, bufadienolides in general were found to inhibit growth of the human carcinoma of the nasopharynx (KB) cell line<sup>8</sup> and more recently were examined in detail (including SAR) against the liver carcinoma PLC/PRF/5 cell line.<sup>2</sup> Usually, the HL-60 cell line is more sensitive to the natural bufadienolides (cf. Table 3). Interestingly, bufalin (16) is believed to occur in human serum and may be protective against leukemia.<sup>1,9</sup>



**Figure 1.** Selected 2D NMR correlations for  $3\beta$ -formyloxy-resibutogenin (1).



**Figure 2.** Selected NOESY correlations for  $3\beta$ -formyloxy-resibufogenin (1).

The isolation of new bufadienolides from plants<sup>10</sup> and animal sources<sup>11</sup> continues along with SAR studies and should lead to additional substances with medical potential.

## **Experimental Section**

General Experimental Procedures. Solvents and reagents of analytical grade were purchased from commercial sources. Thin-plate Ch'an Su, which was a black rectangular thin plate (15 cm  $\times$  23 cm  $\times$  0.1 cm) prepared by Shanghai Medicinal Herbs Import and Export Corp. (Shanghai), was purchased in a Hong Kong folk-medicine market in 1995. The UV spectra, IR spectra, and optical rotations were measured using a SHIMADZU UV mini 1240 UV-vis spectrometer, JASCO FT/IR-300 spectrometer, and HORIBA SEPA-300 high sensitive polarimeter, respectively. FABMS were recorded with a JEOL JMS-AX 505H using *m*-nitrobenzyl alcohol as a matrix (positive mode) or with a JEOL LC-Mate using a glycerol matrix. NMR spectra were recorded at room temperature using a JEOL EX-500 spectrometer with 500 MHz for <sup>1</sup>H and 125 MHz for  ${}^{13}C$ . Compounds were dissolved in CDCl<sub>3</sub> (for 1, 2, and 5), CD<sub>3</sub>OD (for 3), or 7:1 CDCl<sub>3</sub>/CD<sub>3</sub>OD (for 4) owing to solubility behavior and measured using 5 mm sample tubes. Chemical shifts (in ppm) were referenced to tetramethylsilane as internal standard. Coupling constants (J values) were expressed in Hz. All 2D NMR experiments were measured using the field gradient mode. NOESY spectra were recorded with 1.0 s mixing time and processed in the phase-sensitive mode. For chromatographic separation, HP-20 (DIAION, Mitsubishi Chemical), Sephadex LH-20 (Pharmacia Biotec), and SiO<sub>2</sub> (Silica gel 60 spherical, KANTO chemical) were used. HPLC was performed with an Inertsil ODS-3 column (20 mm i.d.  $\times$  250 mm, GL Science) packed with 5  $\mu$ m ODS. TLC was conducted on Uniplate silica gel  $GF_{254}$  TLC plates from ANALTECH. The spotes were detected by UV light at 254 nm (UV GL-25 Mineralight lamp, Upland, CA) and color reaction spraying with 5% H<sub>2</sub>SO<sub>4</sub>-ethanol reagent and heating at 140

**Extraction and Isolation.** Thin-plate Ch'an Su (2.0 kg) was ground into a rough powder and extracted successively

 $(3\times)$  by methanol and 1:1 ethanol-water for 5 days at room temperature. The extract was concentrated (reduced pressure) to provide 600 g of residue. Part of the residue (270 g) was subjected to column chromatography on HP-20, eluting with a gradient of CH<sub>3</sub>OH-water by increasing the CH<sub>3</sub>OH (20-100%), to afford five fractions. Fraction 5 was rich in bufadienolides by TLC (developed by *n*-hexane-CH<sub>2</sub>Cl<sub>2</sub>-acetone (4:3:3) inspection and subjected to column chromatography on Sephadex LH-20 (eluting with 1:1 CH<sub>2</sub>Cl<sub>2</sub>-CH<sub>3</sub>OH). The bufadienolide fraction was rechromatographed on Sephadex LH-20 eluting with *n*-hexane–CH<sub>2</sub>Cl<sub>2</sub>–CH<sub>3</sub>OH (4:5:1). Column chromatography on SiO<sub>2</sub>, Sephadex LH-20, and HPLC was used repeatedly for separation and followed by checking the color reactions on TLC. By these methods, resibufogenin 3-formate (1, 11.2 mg, 0.0012%), 19-oxobufalin (2, 25.1 mg, 0.0028%), 19-oxodesacetylcinobufagin (3, 30.3 mg, 0.0034%),  $6\alpha$ -hydroxycinobufagin (4, 12.1 mg, 0.0013%),  $5\beta$ -hydroxybufalin (5, 52.2 mg, 0.0058%), 5 $\beta$ -hydroxybufotalin (6, 10.8 mg, 0.0012%), 19-hydroxyresibufogenin (= resibufaginol) (7, 71.3 mg, 0.0079%), 12β-hydroxyresibufogenin (**8**, 50.6 mg, 0.0056%), and  $12\beta$ -hydroxycinobufagin (9, 9.3 mg, 0.0010%) were obtained. In addition, the 10 well-known bufadienolides, resibufogenin (11), cinobufagin (12), desacetylcinobufagin (13), cinobufotalin (14), desacetylciobufotalin (15), bufalin (16), bufotalin (17), desacetylbufotalin (18), telocinobufagin (19), and gamabufotalin (20), were isolated and identified by direct comparison with authentic samples. Bufadienolides were also detected in fraction 4 by TLC. When that fraction was subjected to column chromatography on Sephadex LH-20, SiO<sub>2</sub>, and by HPLC as with fraction 5, the result was 19-hydroxydesacetylcinobufagin (= desacetylcinobufaginol) (10, 108.0 mg, 0.012%).

**Resibufogenin 3-formate (1):** colorless solid;  $[\alpha]_D^{21} + 12.0^{\circ}$  (*c* 0.1, CH<sub>3</sub>OH); UV (CH<sub>3</sub>OH)  $\lambda_{max}$  (log  $\epsilon$ ) 298 nm (3.4); IR (KBr)  $\nu_{max}$  3447, 2928, 1717, 1653, 1636, 1540, 1456, 1257, 1187, 1155, and 1121 cm<sup>-1</sup>; FABMS *m*/*z* 413 (M + H)<sup>+</sup> and 435 (M + Na)<sup>+</sup>; HRFABMS *m*/*z* 413.2335 [calcd for C<sub>25</sub>H<sub>33</sub>O<sub>5</sub> (M + H)<sup>+</sup>, 413.2328]; <sup>1</sup>H and <sup>13</sup>C NMR data are recorded in Tables 1 and 2.

**19-Oxobufalin (2):** colorless solid;  $[\alpha]_D{}^{21} + 7.0^{\circ}$  (*c* 0.1, CH<sub>3</sub>-OH); UV (CH<sub>3</sub>OH)  $\lambda_{max}$  (log  $\epsilon$ ) 299 nm (3.6); IR (KBr)  $\nu_{max}$  3416, 2926, 1713, 1633, 1538, 1451, 1129, 1065, 1028, 947, and 833 cm<sup>-1</sup>; FABMS *m*/*z* 401 (M + H)<sup>+</sup> and 423 (M + Na)<sup>+</sup>; HRFABMS *m*/*z* 401.2358 [calcd for C<sub>24</sub>H<sub>33</sub>O<sub>5</sub> (M + H)<sup>+</sup>, 401.2328]; <sup>1</sup>H and <sup>13</sup>C NMR data appear in Tables 1 and 2.

**19-Oxodesacetylcinobufagin** (3): colorless solid;  $[\alpha]_D^{21}$ +17.3° (*c* 0.1, CH<sub>3</sub>OH); UV (CH<sub>3</sub>OH)  $\lambda_{max}$  (log  $\epsilon$ ) 295 nm (3.6); IR (KBr)  $\nu_{max}$  3379, 2925, 1708, 1536, 1449, 1134, and 1029 cm<sup>-1</sup>; FABMS *m*/*z* 415 (M + H)<sup>+</sup> and 437 (M + Na)<sup>+</sup>; HRFABMS *m*/*z* 415.2135 [calcd for C<sub>24</sub>H<sub>31</sub>O<sub>6</sub> (M + H)<sup>+</sup>, 415.2121]; <sup>1</sup>H and <sup>13</sup>C NMR data in Tables 1 and 2.

**6**α-**Hydroxycinobufagin (4):** colorless solid;  $[\alpha]_D{}^{21} - 3.2^\circ$ (*c* 0.1, CH<sub>3</sub>OH); UV (CH<sub>3</sub>OH)  $\lambda_{max}$  (log  $\epsilon$ ) 294 nm (3.7); IR (KBr)  $\nu_{max}$  3417, 2927, 1714, 1633, 1537, 1454, 1374, 1240, 1131, 1040, and 881 cm<sup>-1</sup>; FABMS *m*/*z* 459 (M + H)<sup>+</sup> and 481 (M + Na)<sup>+</sup>; HRFABMS *m*/*z* 459.2406 [calcd for C<sub>26</sub>H<sub>35</sub>O<sub>7</sub> (M + H)<sup>+</sup>, 459.2383]; <sup>1</sup>H and <sup>13</sup>C NMR data in Tables 1 and 2.

**5**β-**Hydroxybufotalin (5):** colorless solid;  $[\alpha]_D^{21}$  –18.7° (*c* 0.1, CH<sub>3</sub>OH); UV (CH<sub>3</sub>OH)  $\lambda_{max}$  (log  $\epsilon$ ) 295 nm (3.6); IR (KBr)  $\nu_{max}$  3394, 2926, 1704, 1651, 1635, 1539, 1456, 1249, 1089, 1047, and 834 cm<sup>-1</sup>; FABMS *m/z* 461 (M + H)<sup>+</sup>; HRFABMS *m/z* 461.2485 [calcd for C<sub>26</sub>H<sub>37</sub>O<sub>7</sub> (M + H)<sup>+</sup>, 461.2538]; <sup>1</sup>H and <sup>13</sup>C NMR data are shown in Tables 1 and 2.

**Biological Evaluation.** Human oral epidemoid carcinoma KB cells, human leukemia HL-60 cells, and murine leukemia MH-60 cells were maintained in culture flasks in MEM with KB, RPMI1640 for HL-60, and MH-60 supplemented with 10% FBS and kanamaycin sulfate (100  $\mu$ g/mL), respectively. For the in vitro drug treatment experiments, tumor cells (2 × 10<sup>4</sup> cells for KB and HL-60 cells, 5 × 10<sup>3</sup> cells for MH-60) were seeded in 0.2 mL of culture medium/well in 96-well plates. The cells were treated in triplicate with graded concentrations of 5  $\mu$ L test samples and were then incubated in 5% carbon dioxide atmosphere at 37 °C for 72 h. The MTT cytotoxicity assay was used to measure the cytotoxic effect expressed as

IC<sub>50</sub>, the concentration of test compound ( $\mu$ g/mL) to give 50% inhibition of cell growth.

Acknowledgment. We are pleased to thank Dr. Masahiko Hayashi of Kitasato Institute and Dr. Charles-Jean Chapuis (ASU-CRI) for the biological evaluations, Outstanding Investigator award (to G.R.P.) CA-44344-01A1-12 from the Division of Cancer Treatment and Diagnosis, NCI, DHHS, the Arizona Disease Control Research Commission, the Robert B. Dalton Endowment for financial assistance, and Dr. Fiona Hogan for other assistance.

## **References and Notes**

- (a) Krenn, L.; Kopp, B. *Phytochemistry* **1998**, *48*, 1–29. (b) Numazawa, S.; Honma, Y.; Yamamoto, T.; Yoshida, T.; Kuroiwa, Y. *Leukemia Res.* **1995**, *19*, 945–953. (c) Jing, Y.; Ohizumi, H.; Kawazoe, N.; Hashimoto, S.; Masuda, Y.; Nakajo, S.; Yoshida, T.; Kuroiwa, Y.; Nakaya, K. *Jpn. J. Cancer Res.* **1994**, *54*, 645–651.
  (c) Kerner Y.; Ketala, A. Harkima, H.; Kawa, M.; Merita, H.; Tahana, K.; Marina, K.; Marina, K.; Karana, K.; Katala, K.; Kuroiwa, Y.; Nakaya, K.; Jpn. J. Cancer Res. **1994**, *54*, 645–651.
- (2) Kamano, Y.; Kotake, A.; Hashima, H.; Inoue, M.; Morita, H.; Takeya, K.; Itokawa, H.; Nandachi, N.; Segawa, T.; Yukita, A.; Saitou, K.; Katsuyama, M.; Pettit, G. R. *Bioorg. Med. Chem.* **1998**, *6*, 1103–1115. Kamano, Y.; Nogawa, T.; Kotake, A.; Tozawa, M.; Pettit, G. R. *J. Liq. Chrom., Relat. Technol.* **1999**, *22*, 2455–2465.
- (3)

- (4) (a) Kamano, Y.; Kotake, A.; Nogawa, T.; Hashima, H.; Tozawa, M.; Morita, H.; Takeya, K.; Itokawa, H.; Matsuo, I.; Ichihara, Y.; Drasar, P.; Pettit, G. R. Collect. Czech. Commun. 1998, 63, 1663-1670. (b) Kamano, Y.; Kotake, A.; Hashima, H.; Morita, H.; Takeya, K.; Itokawa, H. Heterocycles 1998, 49, 275-279.
- (5) (a) Kamano, Y.; Morita, H.; Takano, R.; Kotake, A.; Nogawa, T.; Hashima, H.; Takeya, K.; Itokawa, H.; Pettit, G. R. Heterocycles 1999, 50, 499-503. (b) Kamano, Y.; Inoue, M.; Pettit, G. R.; Satoh, H.; Tozawa, M. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 22nd ed.; Kyushu Daigaku Rigakubu Kagakka: Fukuoka, Japan, 1979; p 33.
- (6) Kamano, Y.; Yamamoto, H.; Hatayama, K.; Tanaka, Y.; Shinohara, M.; Komatsu, M. Tetrahedron Lett. 1968, 54, 5669-5672.
- (7) Schüpbach, M.; Tamm, C. Helv. Chim. Acta 1969, 47, 2217-2226.
- (8) Ode, R. H.; Pettit, G. R.; Kamano, Y. In Steroids; Hey, D. H., Johns, W. F., Eds.; Buttersworths: Boston, 1976; Vol. 8, p 145; ibid. 1973; p 151.
- (9) Watabe, M.; Kawazoe, N.; Masuda, Y.; Nakajo, S.; Nakaya, K. Cancer Res. 1997, 57, 3097-3100.
- (10) Krenn, L.; Kopp, B.; Deim, A.; Robien, W.; Kubelka, W. Planta Med. **1993**, *60*, 63–69.
- (11) Matsukawa, M.; Akizawa, T.; Morris, J. F.; Butler, V. P.; Yoshioka, M. Chem. Pharm. Bull. 1996, 44, 255-257.

NP0101088